Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins
نویسندگان
چکیده
Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs), toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC), alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs) to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH), and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC), but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs) which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.
منابع مشابه
Purification and some properties of progenitor toxins of Clostridium botulinum type B.
Purification of progenitor toxin of Clostridium botulinum type B strain Okra was undertaken by sequential steps of acid precipitation, extraction, ammonium sulfate precipitation, ribonuclease digestion, acid precipitation, protamine treatment, sulphopropyl-Sephadex chromatography, and Sephadex G-200 gel filtration. Two different molecular-sized toxins, named large (L) and medium (M) toxins, wer...
متن کاملBotulinum Neurotoxin A Complex Recognizes Host Carbohydrates through Its Hemagglutinin Component
Botulinum neurotoxins (BoNTs) are potent bacterial toxins. The high oral toxicity of BoNTs is largely attributed to the progenitor toxin complex (PTC), which is assembled from BoNT and nontoxic neurotoxin-associated proteins (NAPs) that are produced together with BoNT in bacteria. Here, we performed ex vivo studies to examine binding of the highly homogeneous recombinant NAPs to mouse small int...
متن کاملClostridium botulinum type E toxins bind to Caco-2 cells by a different mechanism from that of type A toxins.
Cultured Clostridium botulinum strains produce progenitor toxins designated as 12S, 16S, and 19S toxins. The 12S toxin consists of a neurotoxin (NTX, 7S) and a non-toxic non-hemagglutinin (NTNH). The 16S and 19S toxins are formed by conjugation of the 12S toxin with hemagglutinin (HA), and the 19S toxin is a dimer of the 16S toxin. Type A cultures produce all 3 of these progenitor toxins, while...
متن کاملCharacterization of botulinum progenitor toxins by mass spectrometry.
Botulinum toxin analysis has renewed importance. This study included the use of nanochromatography-nanoelectrospray-mass spectrometry/mass spectrometry to characterize the protein composition of botulinum progenitor toxins and to assign botulinum progenitor toxins to their proper serotype and strain by using currently available sequence information. Clostridium botulinum progenitor toxins from ...
متن کاملMolecular composition of Clostridium botulinum type A progenitor toxins.
The molecular composition of progenitor toxins produced by a Clostridium botulinum type A strain (A-NIH) was analyzed. The strain produced three types of progenitor toxins (19 S, 16 S, and 12 S) as reported previously. Purified 19 S and 16 S toxins demonstrated the same banding profiles on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), indicating that they consist of the ...
متن کامل